Fine mapping of the maize QTL qSRC3, responsible for red silk, uncovered the candidate gene ZmMYB20, which encodes an R2R3-MYB transcription factor, has light-sensitive expression, and putatively regulates genes expression associated with anthocyanin biosynthesis. Colorless silk is a key characteristic contributing to the visual quality of fresh corn intended for market distribution. Nonetheless, the identification of Mendelian trait loci and associated genes that control silk color has been scarce. In this study, a F2 population arising from the hybridization of the single-segment substitution line qSRC3MT1 with red silk, carrying an introgressed allele from teosinte (Zea mays ssp. mexicana), and the recurrent maize inbred line Mo17, characterized by light green silk, was utilized for fine mapping. We found that the red silk trait is controlled by a semi-dominant genetic locus known as qSRC3, and its expression is susceptible to light-mediated inhibition. Moreover, qSRC3 explained 68.78% of the phenotypic variance and was delimited to a 133.2kb region, which includes three genes. Subsequent expression analyses revealed that ZmMYB20 (Zm00001d039700), which encodes an R2R3-MYB transcription factor, was the key candidate gene within qSRC3. Yeast one-hybrid and dual-luciferase reporter assays provided evidence that ZmMYB20 suppresses the expression of two crucial anthocyanin biosynthesis genes, namely ZmF3H and ZmUFGT, by directly binding to their respective promoter regions. Our findings underscore the significance of light-inhibited ZmMYB20 in orchestrating the spatial and temporal regulation of anthocyanin biosynthesis. These results advance the production of colorless silk in fresh corn, responding to the misconception that fresh corn with withered colored silk is not fresh and providing valuable genetic resources for the improvement of sweet and waxy maize.
Read full abstract