Machine learning techniques are pervasive tools for emerging commercial applications and many dedicated machine learning computers on different scales have been deployed in embedded devices, servers, and data centers. Currently, most machine learning computer architectures still focus on optimizing performance and energy efficiency instead of programming productivity. However, with the fast development in silicon technology, programming productivity, including programming itself and software stack development, becomes the vital reason instead of performance and power efficiency that hinders the application of machine learning computers. In this article, we propose Cambricon-F, which is a series of homogeneous, sequential, multi-layer, layer-similar, and machine learning computers with same ISA. A Cambricon-F machine has a fractal von Neumann architecture to iteratively manage its components: it is with von Neumann architecture and its processing components (sub-nodes) are still Cambricon-F machines with von Neumann architecture and the same ISA. Since different Cambricon-F instances with different scales can share the same software stack on their common ISA, Cambricon-Fs can significantly improve the programming productivity. Moreover, we address four major challenges in Cambricon-F architecture design, which allow Cambricon-F to achieve a high efficiency. We implement two Cambricon-F instances at different scales, i.e., Cambricon-F100 and Cambricon-F1. Compared to GPU based machines (DGX-1 and 1080Ti), Cambricon-F instances achieve 2.82x, 5.14x better performance, 8.37x, 11.39x better efficiency on average, with 74.5, 93.8 percent smaller area costs, respectively. We further propose Cambricon-FR, which enhances the Cambricon-F machine learning computers to flexibly and efficiently support all the fractal operations with a reconfigurable fractal instruction set architecture. Compared to the Cambricon-F instances, Cambricon-FR machines achieve 1.96x, 2.49x better performance on average. Most importantly, Cambricon-FR computers are able to save the code length with a factor of 5.83, thus significantly improving the programming productivity.