The origin of silicic rocks (SiO2 > 65 wt%) in Continental Flood Basalt (CFB) provinces could be attributed to complex petrogenetic processes. The 65.5–66 Ma old Deccan Traps CFB contains eight sporadic but significant silicic rock exposures that are studied here in a comprehensive framework using field observations, petrography, major oxides (n = 56), and trace element chemistry. Rhyolite and granophyre, as well as subordinate felsite, ignimbrite, trachyte, pitchstone, and microgranite coexist with volcanic and plutonic mafic rocks such as basalt, basaltic andesite, and gabbro. Multiple isolated and circular/semi-circular hills and linear dykes of silicic rocks are present in the form of lavas with prominent flow folding, rheomorphic ignimbrite, and tuffs. The ‘Rheological Agpaitic Index’ (RAI) indicates that most of the silicic rocks in the Deccan Traps are effusive in nature, except for Rajpipla, Alech, Bombay, and Osham silicic rocks, which are marked by explosive volcanism. Thermodynamic-based Rhyolite-MELTS modelling suggests that the major oxide composition of Pavagadh and Barda basalt is a likely candidate for the parental melt composition of the silicic rocks of the Deccan Traps. Ba, Sr, P, Zr, and Ti anomalies are consistent with the fractionation of K-feldspar, plagioclase, apatite, zircon, and Fe-Ti oxides, respectively. Two broad REE patterns are noticed in the Deccan Traps silicic rocks: a flat pattern for Barda, Alech, and Chogat-Chamardi silicic rocks, and a steep REE pattern for Osham, Rajula, Pavagadh, Rajpipla, and Bombay silicic rocks. Trace element modelling reveals that 5–10 % partial melting of a spinel peridotite source could produce an REE pattern and abundances similar to the associated basalts. Further extensive fractional crystallization (60–90 %) of the parental mafic melt at a deeper depth (where spinel is stable) could produce the REE composition and pattern observed in most silicic rocks except for those of Barda, Alech, and Chogat-Chamardi, which require fractional crystallization of the same parental melt at a shallower depth (where spinel is not stable). The geochemical variability of Deccan Traps silicic rocks reveals an origin from a mantle-derived parental mafic melt that evolved via the assimilation and fractional crystallization (AFC) process to form the silicic exposures, which is typical of silicic volcanism in other global CFBs.
Read full abstract