Abstract
AbstractSilicic lithologies on planetary surfaces indicate magmatic evolutionary processes in their interiors. The Wolf crater complex within Mare Nubium on the Moon is one such silicic construct associated with a high thorium anomaly. This study integrates morphological, compositional, chronological and gravity anomaly analyses of high‐resolution data from various lunar missions to establish this construct as a silicic volcanic caldera. Lobate flows with steeply sloping fronts indicate that the crater rims comprise high‐viscosity silicic lavas, while the structurally controlled inner crater walls suggest caldera collapse triggered by magma depletion. In the crater rims, low Christiansen Feature position values reaffirm the presence of silicic lithologies, consistent with the low gravity anomaly signature beneath the complex, while spectroscopic data reveal low mafic mineral abundances and negligible hydration features. Chronological analyses yield silicic volcanism ages coeval with surrounding mare basalts (3.8–3.6 Ga), while intra‐caldera basalts have 2.36–2.02 Ga ages, indicating prolonged magmatism in this region. Melting of suitable crustal protoliths like alkali gabbronorite/monzogabbro/troctolite by basaltic underplating is inferred to have generated silicic magmas that formed the Wolf volcanic complex, instead of basaltic magma fractionation or silicate‐liquid immiscibility processes. Large impacts during the Late Heavy Bombardment may have enhanced partial melting of the mantle and created crustal fractures that facilitated the ascent of viscous silicic melts through the lunar crust. Contemporaneous existence of suitable protoliths and adequate crustal pathways for magma ascent may have controlled silicic volcanism on the Moon, and can explain the sporadic occurrence and overlapping ages of the lunar silicic constructs.
Published Version
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have