A novel simple and selective electrochemical procedure is utilized for the determination of Dinoprostone (DIN) in drug substance and pharmaceutical preparation with good recovery and without interference with other excipient. Herein, the electrochemical sensing platform based upon preparing gold nanoparticle sensor on silica modified carbon paste electrode. The surface morphology of the modified electrode was characterized by scanning electron microscope. Different experimental conditions, including electrode composition, effect of pH and scan rate were estimated carefully by cyclic voltammetry to obtain the highest electrochemical response. By using square wave voltammetry a good linear response was obtained in the range of, 2 x 10-5-4 x10-4 mol L-1, and 2 x 10-7-1.6 x 10-4 mol L-1, with low detection limit of 5 x 10-6 mol L-1, and 4.9 x 10-8 mol L-1 by CPE and GNP/SMCPE respectively. The obtained results are in good agreement with those obtained by official method. No electrochemical method was reported before for determination of DIN. The developed method was simple, rapid, economic and challenging to green analytical chemistry.