Abstract

ABSTRACTIn this work, two ordered mesoporous silicas (HMS and SBA-15) were prepared and incorporated into carbon paste electrodes (CPEs) to obtain mesostructured sensors for a rapid determination of bisphenol A (BPA) in waters by voltammetric techniques. The materials were characterised by nitrogen adsorption-desorption measurements, transmission electron microscopy and scanning electron microscopy. The electrochemical properties of the modified carbon paste electrodes were studied by differential pulse voltammetry (DPV) and cyclic voltammetry (CV). Results showed that the sensor modified with HMS (HMS-CPE) exhibited strong adsorption activity toward the oxidation of BPA, with a well-defined voltammetric peak at +0.6 V. Moreover, the HMS-CPE exhibited a wider linearity range, from 0.44 to 3.5 μM BPA, with a detection limit of 61 nM (S/N = 3) and good reproducibility by DPV. The enhanced performance of the HMS-CPE could be attributed to its high surface area, with a 3 D wormhole-like channel structure that favoured an excellent accessibility, high adsorption capacity and faster adsorption rate of BPA. This novel sensor was coupled to a portable system and successfully applied for a rapid determination of BPA in tap, mineral, well and river water samples with good recovery, ranging from 98 ± 12 to 103 ± 7%.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.