The growth of vertically aligned and ordered polyaniline nanofilaments is controlled by potentiostatic polymerization through hexagonally packed and oriented mesoporous silica films. In such small pore template (2 nm in diameter), quasi-single PANI chains are likely to be produced. From chronoamperometric experiments and using films of various thicknesses (100-200 nm) it is possible to evidence the electropolymerization transients, wherein each stage of polymerization (induction period, growth, and overgrowth of polyaniline on mesoporous silica films) is clearly identified. The advantageous effect of mesostructured silica thin films as hard templates for the generation of isolated polyaniline nanofilaments is demonstrated from enhancement of the reversibility between the conductive and the nonconductive states of polyaniline and the higher electroactive surface areas displayed for all mesoporous silica/PANI composites. The possibility to control and tailor the growth of conducting polymer nanofilaments offers numerous opportunities for applications in various fields including energy, sensors and biosensors, photovoltaics, nanophotonics, or nanoelectronics.