Determination of valproic acid in the drug was carried out on the aluminum silica gel 60F254 plates and using acetone–water–chloroform–ethanol–ammonia at a volume ratio of 30:1:8:5:11 as the mobile phase, respectively. Two methods of detection of valproic acid were used. The first was a 2% aqueous CuSO4×5H2O solution, and the second was a 2′,7′-dichlorofluorescein-aluminum chloride-iron (III) chloride system. The applied TLC-densitometric method is selective, linear, accurate, precise, and robust, regardless of the visualizing reagent used for the determination of valproic acid in Convulex capsules. It has low limits of detection (LOD) and limits of quantification (LOQ), which are equal to 5.8 μg/spot and 17.4 μg/spot using a 2% aqueous CuSO4×5H2O solution as visualizing agent and also 0.32 μg/spot and 0.97 μg/spot using a 2′,7′-dichlorofluorescein-aluminum chloride-iron (III) chloride system as visualizing reagent, respectively. The described analytical method can additionally be used to study the identity of valproic acid in a pharmaceutical preparation. The linearity range was found to be 20.00–80.00 μg/spot and 1.00–2.00 μg/spot for valproic acid detected on chromatographic plates using a 2% aqueous CuSO4×5H2O solution and the 2′,7′-dichlorofluorescein-aluminum chloride-iron (III) chloride system, respectively. A coefficient of variation that was less than 3% confirms the satisfactory accuracy and precision of the proposed method. The results of the assay of valproic acid equal 96.2% and 97.0% in relation to the label claim that valproic acid fulfill pharmacopoeial requirements. The developed TLC-densitometric method can be suitable for the routine analysis of valproic acid in pharmaceutical formulations. The proposed TLC-densitometry may be an alternative method to the modern high-performance liquid chromatography and square wave voltammetry in the control of above-mentioned substances, and it can be applied when other analytical techniques is not affordable in the laboratory.
Read full abstract