Experimental autoimmune encephalomyelitis (EAE) is one of the main animal models used for the study of Multiple Sclerosis (MS). Long-chain lipophilic amino alcohols with immunoregulatory activities have already been studied in some models of inflammatory diseases, but the action of these compounds in EAE and MS is still unknown. In this study, we investigated whether the lipophilic amino alcohol 4b would act to improve the clinical signs of EAE and reduce the demyelination process and the neuroinflammatory parameters in the spinal cord, as well as the inflammatory process in the inguinal lymph nodes, of C57Bl/6 mice induced with EAE after stimulation with MOG35-55 and pertussis toxin. The 4b treatment (1.0 mg/kg/day) was orally administered, starting on the day of onset of clinical signs of the disease (10th) and ending on the 20th day after immunization. This treatment was able to reduce the cell count on the inguinal lymph nodes, the migration of inflammatory cells into the central nervous system (CNS), as well as the processes of microgliosis, astrogliosis, and the production of chemokines and pro-inflammatory cytokines, thus increasing the IL-10 anti-inflammatory cytokine levels in EAE mice. The inhibition of Akt phosphorylation in the CNS of EAE mice after treatment with 4b indicates that the immunoregulatory action of 4b is related to the PI3K/Akt signaling pathway. Our results indicate the immunoregulatory efficacy of the new compound 4b in the control of some inflammatory parameters and in the glial proliferation. In addition, 4b was able to reduce the demyelination of neurons and the worsening of clinical signs of EAE as effectively as the compound FTY720, the first oral drug approved by the FDA for the treatment of MS.