Given any space-time field, Empirical orthogonal function (EOF) analysis finds a set of orthogonal spatial patterns along with a set of associated uncorrelated time series or principal components (PCs). Spatial orthogonality and temporal uncorrelation of EOFs and PCs respectively impose limits on the physical interpretability of EOF patterns. This is because physical processes are not independent, and therefore physical modes are expected in general to be non-orthogonal. Rotated empirical orthogonal functions (REOF) were introduced to generate general localized structures by compromising some of the EOF properties such as orthogonality. EOF and REOF analysis are carried out for the significant wave height (SWH) data for the Bay of Bengal (BOB) region for the period 1958 to 2001. Separate experiments were conducted for all the months together and also for July and December representing the southwest and northeast monsoon periods. The first eigenmodes account for 84%, 68%, and 59% of the total variability for the above three cases respectively. The REOF proved to be more effective than EOF for the above region.
Read full abstract