Abstract Assessment of temporal trends in vegetation greenness and related influences aids understanding of recent changes in terrestrial ecosystems and feedbacks from weather, climate, and environment. We analyzed 1-km normalized difference vegetation index (NDVI) time series data (1989–2016) derived from the Advanced Very High Resolution Radiometer (AVHRR) and developed growing-season time-integrated NDVI (GS-TIN) for estimating seasonal vegetation activity across stable natural land cover in the conterminous United States (CONUS). After removing areas from analysis that had experienced land-cover conversion or modification, we conducted a monotonic trend analysis on the GS-TIN time series and found that significant positive temporal trends occurred over 35% of the area, whereas significant negative trends were observed over only 3.5%. Positive trends were prevalent in the forested lands of the eastern one-third of CONUS and far northwest, as well as in grasslands in the north-central plains. We observed negative and nonsignificant trends mainly in the shrublands and grasslands across the northwest, southwest, and west-central plains. To understand the relationship of climate variability with these temporal trends, we conducted partial and multiple correlation analyses on GS-TIN, growing-season temperature, and water-year precipitation time series. The GS-TIN trends in northern forests were positively correlated with temperature. The GS-TIN trends in the central and western shrublands and grasslands were negatively correlated with temperature and positively correlated with precipitation. Our results revealed spatial patterns in vegetation greenness trends for different stable natural vegetation types across CONUS, enhancing understanding gained from prior studies that were based on coarser 8-km AVHRR data. Significance Statement Assessing vegetation trends, cycles, and related influences is important for understanding the responses and feedbacks of terrestrial ecosystems to climatic and environmental changes. We analyzed vegetation greenness trends (1989–2016) for stable natural land cover across the conterminous United States, based on vegetation index time series derived from coarse-resolution optical satellite sensors. We found greening trends in the forests of the east and far northwest and the grasslands of the northern central plains that correlated with increasing temperature in the regions. We observed browning and no trends mainly in the shrublands and grasslands across the northwest, southwest, and western central plains, associated with increasing temperature and decreasing precipitation. Future research should focus on vegetation greenness analysis using finer-resolution satellite data.
Read full abstract