Quantum dot light-emitting diodes (QLEDs) present commercial potential and application prospects in both lighting and display technologies. Blue quantum dots (QDs) possess a substantial bandgap and a profound valence band. The significant potential barrier between blue quantum dots and the hole transport layer leads to an imbalance in charge transfer, thereby adversely impacting the device performance. Self-assembled monolayers are attractive for carrier transport. Here, a dynamic self-assembly method is introduced, doping [2-(9H-carbazol-9-yl)ethyl]phosphonic acid (2PACz) into Poly(3,4-ethylenedioxythiophene)-poly(styrenesulfonate) (PEDOT:PSS) to form electric dipoles at interfaces, realizing better energy level alignment and hole injection rate. The maximum external quantum efficiency rises from 8.77% to 17.26% with 2PACz: PEDOT:PSS strategy, representing a twofold enhancement. This result demonstrates that small molecules undergo dynamic self-assembled bilateral motions during crystallization process, aligning energy levels and passivating interfacial trap states, thereby endowing blue QLEDs with high brightness and high efficiency. This work offers a viable pathway for broader applications of blue QLEDs.
Read full abstract