Abstract
We examined the classical electrostatic effects due to geometric surface structures on conductive field emission needles numerically using the finite element method and compared our results to several commonly applied analytic relations. Analysis of the morphology of electrochemically prepared Mo needles by high-resolution transmission electron microscopy was incorporated in the numerical analysis in the form of small surface protrusions and gross needle shape. We found that the error between the electrostatic potential defined by popular analytic equations and both analytic equations derived in prolate spheroidal coordinates and finite element method results was significant for ellipsoidal needles with and without surface protrusions. The morphology of the surface protrusion was found to introduce a significant nonlinear potential barrier near the needle surface. Finally we numerically analyzed a nonsymmetric, nonhomogeneous experimental needle indicating that even larger errors in the electrostatic potential can be expected relative to analytic equations.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.