Oxalis articulata, an alien clonal plant species, is widely cultivated in China as an ornamental species, and has escaped and became naturalized. Belowground storage in tubers of O. articulata may play a key role for the potential invasion. In this study, we investigated the responses of its clonal resource storage strategy to mowing, aiming to uncover the mechanism underlying their invasion from a perspective of clonal storage. We examined the changes of biomass in different organs, biomass allocation, and several functional traits of roots, tubers and leaves in O. articulata by conducting a greenhouse experiment. The results showed that significant main and interactive effects of mowing intensity and mowing frequency on some functional traits of leaves and roots were found. In contrast, tuber biomass and total biomass did not vary under different mowing treatments. The frequent mowing significantly increased the biomass allocation to tubers. These findings demonstrated that clonal storage, to some extent, could enhance the resistance of O. articulata to environmental disturbance, which might promote its invasiveness.
Read full abstract