본 논문은 모바일 폰 기반의 간판 영상내 한글 문자인식에 관한 연구로써 인식 대상은 간판영상에서 추출된 상호명으로 하였고 인식대상 문자 수는 상호명 빈도수 기반 808자로 한정하였다. 인식과정은 특징 추출, 대분류, 상세 분류로 구성되고 특징 추출과정에서는 문자영상의 크기, 잡음 및 왜곡에 강건한 비선형 방향성분 특징을 이용하였고 대분류 과정에서는 추출된 특징과 인식 대상문자에 대하여 최소거리 분류를 수행하고 10순위까지의 후보 문자를 추출하였다. 상세 분류 과정에서는 Fisher discriminant measure 이용하여 대분류에서 발생 할 수 있는 오인 식 결과를 보완하였다. 실험결과 1순위 인식률은 80.45%이고 5순위까지의 누적 인식률은 93.51%를 보였다. In this paper, we propose a Korean character recognition method from outboard signboard images. We have chosen 808 classes of Korean characters by an analysis of frequencies of appearance in a dictionary of signboard names. The proposed method mainly consists of three steps: feature extraction, rough classification, and coarse classification. The first step is to extract a nonlinear directional segments feature, which is immune to the distortion of character shapes. The second step computes an ordered set of 10 recognition candidates using a minimum distance classifier. The last step reorders the recognition candidates using a Fisher discriminant measure. As experimental results, the recognition accuracy is 80.45% for the first choice, and 93.51% for the top five choices.