Pulmonary magnetic resonance angiography (MRA) is an imaging method with proven utility for the exclusion of pulmonary embolism and avoids the need for ionizing radiation and iodinated contrast agents. High-relaxivity gadolinium-based contrast agents (GBCAs), such as gadopiclenol, can be used to reduce the required gadolinium dose for pulmonary MRA. The aim of this study was to compare the contrast enhancement performance of gadopiclenol with an established gadobenate dimeglumine-enhanced pulmonary MRA protocol. In this retrospective single-center study, data from 152 patients who underwent pulmonary MRA at 1.5 T were analyzed. Imaging was performed with either 0.05 mmol/kg gadopiclenol (n = 75) or 0.1 mmol/kg gadobenate dimeglumine (n = 77), using dedicated multiphasic imaging protocols with precontrast, pulmonary arterial phase, immediate delayed phase, and a low flip-angle T1-weighted spoiled gradient echo acquisition. Subjective image quality evaluation was performed blinded by 2 radiologists on a 5-point Likert scale. For the estimation of interrater reliability, Cohen weighted κ was calculated. For semiquantitative assessment, signal intensities were measured in the pulmonary arteries, and relative signal enhancement was calculated. Data from groups were compared with Mann-Whitney U tests using Bonferroni corrections. Signal enhancement relative to precontrast in the first-pass pulmonary arterial phase was higher with 0.05 mmol/kg gadopiclenol compared with 0.1 mmol/kg gadobenate dimeglumine (20.0-fold ± 5.6-fold vs 17.8-fold ± 5.8-fold; P = 0.015). Readers observed no difference in subjective rating in terms of intravascular contrast, peripheral vessel depiction, and diagnostic confidence with substantial interrater reliability (Cohen κ = 0.73 [95% confidence interval: 0.57-0.89], 0.65 [0.55-0.75], and 0.74 [0.65-0.84], all P's < 0.001). No severe adverse events were recorded for any clinical MRA examination. The high-relaxivity contrast agent gadopiclenol can facilitate a reduction in gadolinium dose by 50% without compromising contrast enhancement for pulmonary MRA. This approach may enhance the safety and sustainability of pulmonary MRA in the long term.
Read full abstract