Abstract 800CLL B cells display many features that suggest a role for antigen stimulation in the development and progression of the disease. These include the expression of stereotyped B-cell receptors (BCRs), the association between IgVH gene mutation status and prognosis, and the gene-expression profile of antigen-stimulated B cells. In addition, CLL B cells have other BCR-related features that distinguish them from normal B lymphocytes, such as lower levels of surface Ig, less efficient BCR signal transduction and increased basal activity of the proximal BCR signaling molecules Lyn and Syk. We have now investigated whether any of these features are related to aberrant expression or function of the phosphatases SHP-1, SHP-2 and Lyp (PTPN22), which regulate the amplitude and duration of the BCR signal by dephosphorylating various components of the BCR signal transduction unit. These phosphatases are also interesting because mutated or polymorphic variants have been linked to various malignant or autoimmune diseases.We started our study by performing nucleotide sequence analysis of the complete coding region of SHP1, SHP2 and Lyp in 8, 21 and 29 CLL B cell samples, respectively. Overall, only two mutations were identified (an R527C substitution in SHP2 and a Q456E substitution in Lyp, each in a single patient), suggesting that these phosphatases are infrequently mutated in CLL. The previously reported Lyp polymorphisms R620W and R263Q were observed in 2 additional cases. We next investigated expression of these phosphatases in purified CLL and normal B cells by immunoblotting. Expression of SHP1 and SHP2 was relatively uniform in the different CLL B-cells samples (n=42) and was not different from normal B cells (n=4). In contrast, expression of Lyp was markedly higher in most CLL samples, with 35 of the 49 investigated cases exhibiting 2 to more than 10 fold higher levels than normal B cells (n=5) (CLL, mean Lyp levels 4.7, SD +/−3.7; normal B cells, mean Lyp levels 0.9, SD +/−0.1, P=0.022). The mean Lyp levels were somewhat higher in U-CLL than M-CLL (6.0 vs. 3.9) and ZAP-70-positive than ZAP-70-negative cases (5.6 vs. 4.7), but these differences were not statistically significant. Analysis of Lyp expression in various lymphoma B-cell lines (n=9) also did not reveal significant differences with respect to normal B-cells, suggesting that Lyp overexpression is a specific feature of CLL.To determine what are the consequences of Lyp overexpression on BCR signaling, we downregulated Lyp in primary CLL B-cells by RNA interference and investigated activation of BCR signaling molecules following sIgM crosslinking. Downregulation of Lyp resulted in a substantial increase in BCR-induced phosphorylation of Lyn (Y397), Syk (Y352), BLNK (Y84) and ERK (T202/Y204), suggesting that overexpression of this phosphatase may be at least partially responsible for the lower BCR signaling capacity of CLL B-cells.Since Lyp expression can be induced in resting T cells by activation with anti-CD3, we investigated whether BCR stimulation will have a similar effect on CLL B-cells. A two-fold increase in Lyp levels was observed after 24 hours of sustained BCR stimulation with immobilized anti-IgM, whereas transient stimulation with soluble anti-IgM resulted in a 20% decrease in Lyp levels. These effects were specific for Lyp, since no such changes were observed in the expression of SHP1 and SHP2.In summary, this study shows that CLL B-cells specifically overexpress the phosphatase Lyp, and important negative regulator of BCR signaling that has been implicated in the pathogenesis of several common autoimmune diseases. Given the observation that Lyp can be induced by sustained BCR engagement and in view of recent findings that Lyp is also overexpressed in anergic B cells, these data further support the notion that CLL cells are continuously exposed to (auto)antigen in vivo. Disclosures:No relevant conflicts of interest to declare.
Read full abstract