In this paper, we investigate the fractional p-Kirchhoff -type system: \t\t\t{M(∫R2N|u(x)−u(y)|p|x−y|N+psdxdy)(−Δ)psu=μg(x)|u|β−2u+aa+bh(x)|u|a−2u|v|b,in Ω,M(∫R2N|v(x)−v(y)|p|x−y|N+psdxdy)(−Δ)psv=σf(x)|v|β−2v+ba+bh(x)|v|b−2v|u|a,in Ω,u=v=0,in RN∖Ω,\\documentclass[12pt]{minimal}\t\t\t\t\\usepackage{amsmath}\t\t\t\t\\usepackage{wasysym}\t\t\t\t\\usepackage{amsfonts}\t\t\t\t\\usepackage{amssymb}\t\t\t\t\\usepackage{amsbsy}\t\t\t\t\\usepackage{mathrsfs}\t\t\t\t\\usepackage{upgreek}\t\t\t\t\\setlength{\\oddsidemargin}{-69pt}\t\t\t\t\\begin{document} $$\\begin{aligned} \\textstyle\\begin{cases} M (\\int_{{ \\mathbb {R} }^{2N}}\\frac{\\vert u(x)-u(y) \\vert ^{p}}{\\vert x-y \\vert ^{N+ps}}\\,dx\\,dy )(- \\Delta )^{s}_{p}u=\\mu g(x)\\vert u \\vert ^{\\beta -2}u+\\frac{a}{a+b}h(x)\\vert u \\vert ^{a-2}u\\vert v \\vert ^{b},&\\mbox{in } \\Omega , \\\\ M (\\int_{{ \\mathbb {R} }^{2N}}\\frac{\\vert v(x)-v(y) \\vert ^{p}}{\\vert x-y \\vert ^{N+ps}}\\,dx\\,dy )(- \\Delta )^{s}_{p}v=\\sigma f(x)\\vert v \\vert ^{\\beta -2}v+\\frac{b}{a+b}h(x)\\vert v \\vert ^{b-2}v\\vert u \\vert ^{a},&\\mbox{in } \\Omega , \\\\ u=v=0,&\\mbox{in } { \\mathbb {R} }^{N}\\setminus \\Omega , \\end{cases}\\displaystyle \\end{aligned}$$ \\end{document} where Omega subset mathbb{R}^{N} is a smooth bounded domain, (-Delta )^{s}_{p} is the fractional p-Laplacian operator with 0< s<1<p and ps< N . a>1, b>1 satisfy 2< a+b< p_{s}^{*}. 1<beta <p_{s}^{*}, p_{s}^{*}=frac{Np}{N-ps} is the fractional critical exponent. μ, σ are two real parameters. M(t)=k+lambda t^{tau }, k>0, λ, tau geq 0, tau =0 if and only if lambda =0. The weight functions g, f, h change sign in Ω and satisfy suitable conditions. By using the Nehari manifold method, it is proved that the system has at least two solutions provided that 2< a+b< pleq p(tau +1)<beta <p_{s}^{*} and (mu ,sigma ) belongs to a certain subset of mathbb {R} ^{2}. Also, by using the mountain pass theorem, we prove that there exist lambda _{1}geq lambda_{0} such that the system admits at least a nontrivial solution for lambda in (0,lambda_{0}) and no nontrivial solution for lambda >lambda_{1} under the assumptions mu =sigma =0 and p< a+b<min {p(tau +1),p_{s}^{*}}.
Read full abstract