In this paper, an event-triggered finite-time controller is proposed for solving the formation control problems of underactuated multiple autonomous surface vessels (ASVs), including asymmetric mass matrix, collision avoidance, maintaining communication distances and prescribed performance. First, to not only avoid collisions between the follower and leader but also maintain an effective communication distance, a desired tracking distance is designed to be maintained. Second, an improved barrier Lyapunov function (BLF) is proposed to implement the tracking error constraint. In addition, the relative threshold event-triggering strategy effectively solves the communication pressure problem and greatly saves communication resources. Finally, based on coordinate transformation, line of sight (LOS) and dynamic surface control (DSC), a comprehensive finite-time formation control method is proposed to avoid collisions and maintain communication distance. All the signals of the proposed control system can be stabilized in finite time (PFS). The numerical simulation results verify the effectiveness of the proposed control system.
Read full abstract