AbstractThe 2018 eruption of Sierra Negra volcano, Galápagos, Ecuador has provided new insights into the mechanisms of caldera resurgence, subsidence, and fissuring at basaltic shield volcanoes. Here, we integrate local (∼0.4 km) seismo‐acoustic records and regional (∼85 km) infrasound array data to present new observations of the 2018 Sierra Negra eruption with improved time and spatial resolutions. These observations include: air‐to‐ground coupling ∼2 hr before the time of the eruption onset, migration of the infrasound tremor from 22:54 June 26 to 12:31 June 27 UT (all times in UT), and persistent infrasound detections during the weeks between 5 July and 18 August from an area that does not coincide with the previously documented eruptive fissures. We interpret air‐to‐ground coupling as infrasound tremor generated in the nearby fissures before the main eruptive phase started, although ambiguity remains in interpreting a single seismic‐infrasonic sensor pair. The progressive location change of the infrasound tremor agrees with the migration of the eruption down the north flank of Sierra Negra at a rate of ∼0.15 ± 0.04 m/s. The weeks‐long persistent detections coincide with a region that has thermal anomalies, co‐eruptive deformation, lava fields, and geological features that could be interpreted as multiple lava tube skylights. Our observations and interpretations provide constraints on the mechanisms underlying fissure formation and magma emplacement at Sierra Negra.
Read full abstract