Abstract

Seismic tremor observed near active volcanoes is an important tool for volcano monitoring as it often appears shortly before eruptions. Although tremor can be generated by a variety of physical processes it is usually interpreted as direct evidence for flowing magma in the sub-surface. These interpretations typically feed into risk assessments for potential eruptions. Using the temporal evolution of tremor amplitude and spectral data from a distributed seismic network that captured the 2018 eruption at Sierra Negra in Galápagos, we determine that tremor is not directly related to sub-surface fluid movement. Instead at Sierra Negra tremor likely indicates a slowly propagating fracture, which is later exploited as a pathway for silent magma flow. Distinct differences in the source migration and the spectral character of pre-eruptive and co-eruptive tremor allow both a location estimate of the future eruption site and a precise timing of the eruption onset.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call