The investigation of the optoelectronic performance of AlGaN-based ultraviolet-C (UV-C) micro light-emitting diodes (μLEDs) emitting at 273 nm is carried out numerically by reducing the chip area from large LED (300 × 300 μm2) to μLED (25 × 25 μm2). However, due to the high surface to volume ratio of μLED, surface recombination becomes dominant that is generated due to robust sidewall defects. The enhanced current spreading in μLED further affects the carrier injection in the active region as the electrons and holes are captured by sidewall defects. These effects are more dominant at low current density in μLED while at high current density, the sidewall defects get saturated, and the surface recombination weakens. Various optimization strategies, such as quantum wells (QWs) width, quantum barriers (QBs) width, and QW number are carried out to study the effect on the performance of 25 × 25 μm2 UV-C μLED. These optimization strategies at low current density (0.1 A/cm2) further improved the electrical/optical properties of AlGaN-based UV-C μLEDs.