Origami metamaterials have gained significant attention in recent years, with extensive analysis conducted on their mechanical properties. Previous studies have primarily focused on the effects of design angles, panel side lengths, folding angles or other geometric and material parameters. However, mountain-valley crease assignments of origami patterns, which significantly effect both the geometric and mechanical properties, have yet to be studied in depth. In this article, we create a series of double-corrugated metamaterials with diverse mountain-valley assignments and analyse their Poisson's ratios and mechanical properties under compression loading. The findings of our study demonstrate that varying the mountain-valley assignments allows for the construction of metamaterials with consistent or distinct Poisson's ratios. These assignments have the capability to program the magnitude and to vary the rate of the folding angles. Furthermore, the mechanical properties of the corresponding metamaterials, in particular the specific energy absorption (SEA) and normalized stiffness, exhibit positive correlations with the respective folding angles. Our study highlights the significance of varying mountain-valley assignments as a promising approach for designing origami metamaterials and programming their mechanical properties.This article is part of the theme issue 'Origami/Kirigami-inspired structures: from fundamentals to applications'.