SiCf/SiC composites are promising candidates for advanced pressurized water reactors (PWRs) fuel cladding materials due to their enhanced accident tolerance. Their mechanical properties are strongly influenced by the braided structure of continuous SiC fibers. This study fabricated SiCf/SiC composite tubes with braid angles ranging from 30° to 50°, evaluating their hoop tensile properties through expansion-due-to-compression (EDC) experiments and analyzing the damage process using finite element method simulation. Results indicate that variations in braid angles significantly affect structural density, thereby impacting mechanical strength under hoop tensile stress. Increased braid angles result in smaller pore units and higher pore density, leading to local stress concentrations and varied deflections at overlapping regions. The dynamic propagation behavior of cracks was investigated through acoustic and structural nondestructive testing methods. Finite element analysis of different braid configurations highlights the pivotal role of pore units in the initiation and propagation of hoop tensile cracks. This study enhances the understanding of toughening structures in 2D braided composites and provides a theoretical basis for future accident-tolerant fuel cladding design.
Read full abstract