Colon cancer poses a significant threat to human life with a high global mortality rate. Early and accurate detection is crucial for improving treatment quality and the survival rate. This paper presents a comprehensive approach to enhance colon cancer detection and classification. The histopathological images are gathered from the CRC-VAL-HE-7K dataset. The images undergo preprocessing to improve quality, followed by augmentation to increase dataset size and enhance model generalization. A deep learning based transformer model is designed for efficient feature extraction and enhancing classification by incorporating a convolutional neural network (CNN). A cross-transformation model captures long-range dependencies between regions, and an attention mechanism assigns weights to highlight crucial features. To boost classification accuracy, a Siamese network distinguishes colon cancer tissue classes based on probabilities. Optimization algorithms fine-tune model parameters, categorizing colon cancer tissues into different classes. The multi-class classification performance is evaluated in the experimental evaluation, which demonstrates that the proposed model provided highest accuracy rate of 98.84%. In this research article, the proposed method achieved better performance in all analyses by comparing with other existing methods. RESEARCH HIGHLIGHTS: Deep learning-based techniques are proposed. DL methods are used to enhance colon cancer detection and classification. CRC-VAL-HE-7K dataset is utilized to enhance image quality. Hybrid particle swarm optimization (PSO) and dwarf mongoose optimization (DMO) are used. The deep learning models are tuned by implementing the PSO-DMO algorithm.
Read full abstract