Pronghorn-Subchannel, referred to as Pronghorn-SC throughout this document, is a subchannel code within the Multiphysics Object-Oriented Simulation Environment (MOOSE) developed at the Idaho National Laboratory (INL). Pronghorn-SC was initially designed to model flows in water-cooled, square-lattice, bare subassemblies. Its capability has been extended to model flows in liquid-metal-cooled, triangular-lattice, wire-wrapped subassemblies. To ensure the accuracy of Pronghorn-SC in predicting the behavior of liquid sodium-cooled reactors, the code was validated by comparing calculations with experimental data, obtained from the experimental breeder reactor (EBR-II), Shutdown Heat Removal Tests (SHRT) 17 and 45R. The steady-state calculation at the beginning of the transients was validated using temperature measurements taken at different axial elevations in the instrumented subassembly XX09. The validation exercise was performed in successive stages. First, a comparison between the measured temperature profiles and standalone Pronghorn-SC simulations using a uniform pin power profile was made. The pin power profile was then refined using a Serpent-2 model of the reactor core. Finally, the radial temperature profile was further corrected considering the inter-assembly heat transfer. A Pronghorn Finite-Volume (FV) thermal hydraulic simulation of XX09 and its six neighboring subassemblies; calculated the heat flux on the inner duct surface of the XX09 subassembly to inform the Pronghorn-SC model. Last, a transient validation calculated the peak temperature evolution during the SHRT tests.
Read full abstract