Abstract

KAERI has designed a prototype Gen-IV SFR (PGSFR) with metallic fuel. And the safety analysis code for the PGSFR, MARS-LMR, is based on the MARS code, and supplemented with various liquid metal related features including sodium properties, heat transfer, pressure drop, and reactivity feedback models. In order to validate the newly developed MARS-LMR, KAERI has joined the International Atomic Energy Agency (IAEA) coordinated research project (CRP) on “Benchmark Analysis of an EBR-II Shutdown Heat Removal Test (SHRT)”. Argonne National Laboratory (ANL) has technically supported and participated in this program. One of benchmark analysis tests is SHRT-45R, which is an unprotected loss of flow test in an EBR-II. So, sodium natural circulation and reactivity feedbacks are major phenomena of interest. A benchmark analysis was conducted using MARS-LMR with original input data provided by ANL. MARS-LMR well predicts the core flow and power change by reactivity feedbacks in the core. Except the results of the XX10, the temperature and flow in the XX09 agreed well with the experiments. Moreover, sensitivity tests were carried out for a decay heat model, reactivity feedback model, inter-subassembly heat transfer, internal heat structures and so on, to evaluate their sensitivity and get a better prediction. The decay heat model of ANS-94 shows better results of fission power, however, the fission power is still over-estimated in the long-term transient region by the reactivity feedbacks. The inter-subassembly heat transfer is the most influential parameter, especially for the non-fueled XX10, which has a low flow and power subassembly. In addition, the appropriate internal heat structure model can be an influential parameter. Finally, the corrected results are proposed with reasonably conjectured parameters. This study can give the validation data for the MARS-LMR and better understanding of the EBR-II SHRT-45R.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.