Electric power networks face critical challenges from extreme weather events and natural disasters, disrupting socioeconomic activities and jeopardizing energy security. This study presents an innovative approach incorporating virtual power plants (VPPs) within networked microgrids (MGs) to address these challenges. VPPs integrate diverse distributed energy resources such as solar- and wind-based generation, diesel generators, shunt capacitors, battery energy storage systems, and electric vehicles (EVs). These resources enhance MG autonomy during grid disruptions, ensuring uninterrupted power supply to critical services. EVs function as mobile energy storage units during emergencies, while shunt capacitors stabilize the system. Excess energy from distributed generation is stored in battery systems for future use. The seamless integration of VPPs and networked technologies enables MGs to operate independently under extreme weather conditions. Prosumers, acting as both energy producers and consumers, actively strengthen system resilience and efficiency. Energy management and VPP allocation are optimized using the jellyfish search optimization algorithm, enhancing resource scheduling during outages. This study evaluates the proposed approach’s resilience, reliability, stability, and emission reduction capabilities using real-world scenarios, including the IEEE 34-bus and Indian 52-bus radial distribution systems. Various weather conditions are analyzed, and a multi-objective function is employed to optimize system performance during disasters. The results demonstrate that networked microgrids with VPPs significantly enhance distribution grid resilience, offering a promising solution to mitigate the impacts of extreme weather events on energy infrastructure.
Read full abstract