Litopenaeus vannamei (Boone, 1931) postlarvae with average initial body weight of 0.089 g were reared in 75-litre PVC tanks for 40 days at salinities of 30 and 60 g l−1. The shrimps were fed compound feed containing protein levels of 35, 40, 45 and 50%, respectively. Salinity had a remarkable effect on growth and survival of L. vannamei juveniles. Higher survival rate and lower growth were observed at 60 g l−1 salinity. Dietary protein level affected the survival and growth of juveniles at both salinities, increased with dietary protein levels in the range of 35 to 45%, but decreased slightly with 50% dietary protein. Broken line analysis showed that the estimated optimal dietary protein levels at salinities of 30 and 60 g l−1 were 45.93 and 46.74%, respectively. Higher salinity resulted in an increased moisture content, ash and crude protein content in the shrimp muscle tissue. The amino acid contents in the shrimp muscle tissue were generally higher at 60 g l−1 salinity and increased dietary protein level led to higher protein content, except with 50% dietary protein. At salinity 60 g l−1, the soluble protein content and activities of glutamic oxalacetic transferase (GOT) and glutamic pyruvic transaminase (GPT) in shrimp muscle tissue were higher, while catalase (CAT) activities were lower. Farming of L. vannamei at a marginal culture salinity (60 g l−1) is feasible though the shrimps were likely exposed to stressful conditions. Reduced growth rate at higher salinity may be attributed to the higher total ammonium (TAN) concentration in the culture medium and extra energy consumption for osmoregulation at hypersaline conditions.