Successful object interaction during daily living involves maintaining the grasped object in static equilibrium by properly arranging the fingertip contact forces. According to the mechanical advantage hypothesis of grasping, during torque production tasks, fingers with longer moment arms would produce greater normal force than those with shorter moment arms. Previous studies have probed this hypothesis by investigating the force contributions of individual fingers through systematic variations (or perturbations) of the properties of the grasped handle. In the current study, we examined the validity of this hypothesis in a paradigm wherein the thumb tangential force was constrained to a minimal constant magnitude. This was achieved by placing the thumb on a freely movable slider platform. The total mass of the handle was systematically varied by adding external loads directly below the center of mass of the handle. Our findings suggest that the mechanical advantage hypothesis manifests only during the heaviest loading condition when a threshold difficulty is reached. We infer that the support for the mechanical advantage hypothesis depends not only on the physical parameters but also on the individual ability to manage the task.