Variation in color morph behavior is an important factor in the maintenance of color polymorphism. Alternative anti-predator behaviors are often associated with morphological traits such as coloration, possibly because predator-mediated viability selection favors certain combinations of anti-predator behavior and color. The Aegean wall lizard, Podarcis erhardii, is color polymorphic and populations can have up to three monochromatic morphs: orange, yellow, and white. We investigated whether escape behaviors differ among coexisting color morphs, and if morph behaviors are repeatable across different populations with the same predator species. Specifically, we assessed color morph flight initiation distance (FID), distance to the nearest refuge (DNR), and distance to chosen refuge (DR) in two populations of Aegean wall lizards from Naxos island. We also analyzed the type of refugia color morphs selected and their re-emergence behavior following a standardized approach. We found that orange morphs have different escape behaviors from white and yellow morphs, and these differences are consistent in both populations we sampled. Orange morphs have shorter FIDs, DNRs, and DRs; select different refuge types; and re-emerge less often after being approached compared to white and yellow morphs. Observed differences in color morph escape behaviors support the idea that morphs have evolved alternative behavioral strategies that may play a role in population-level morph maintenance and loss.Significance statementColor polymorphic species often differ in behaviors related to reproduction, but differences in other behaviors are relatively underexplored. In this study, we use an experimental approach in two natural populations of color populations of color polymorphic lizards to determine that color morphs have diverged in their escape behaviors. By conducting our experiments in two different populations with similar predator regimes, we show for the first time that behavioral differences among intra-specific color morphs are repeatable across populations, suggesting that alternative behavioral strategies have evolved in this species. Using this experimental approach, we demonstrate that the brightest orange morph stays closer to refuge than other morphs, uses a different refuge type (vegetation) more often than other morphs (wall crevices), and take much longer to emerge from refuge after a simulated predation event than other morphs. Thus, selective pressures from visual predators may differ between morphs and play a role in the evolution and maintenance of color polymorphisms in these types of systems. Our study species, Podarcis erhardii, belongs to a highly color polymorphic genus (19/23 spp. are color polymorphic) that contains the same three color morphs, thus we believe our results may be relevant to more than just P. erhardii.
Read full abstract