Glycoproteins have become the most often screened tumor markers in the in vitro diagnostics. Although a large number of electrochemical methods have been proposed to sensitively detect glycoproteins, most of them involve the aid of laborious signal amplification. Herein, we report the use of glycan-evocated metallization (GlyMetal) for the amplification-free electrochemical detection of glycoproteins at low concentration levels. Briefly, the glycoproteins of interest are captured by an aptamer recognition layer, and then the glycans of targets are oxidized by NaIO4 to convert the 1,2-diol sites into aldehyde groups for the silver deposition-based metallization, followed by the electrochemical stripping assay of the deposited metallic silver for glycoprotein quantification via the established solid-state Ag/AgCl voltammetric process. As GlyMetal can enable the deposition of a large amount of metallic silver and a high signal-to-background ratio can be obtained for the solid-state Ag/AgCl voltammetric stripping assay, the developed GlyMetal-based electrochemical method is applicable to the amplification-free detection of glycoproteins. As a proof of concept, a detection limit of 1.65 pg/mL has been achieved for carcinoembryonic antigen (CEA) detection. In addition to the high selectivity, desirable results have been obtained with respect to the use of the method for CEA detection in serum samples. In consideration of the desirable simplicity, short assay time, and cost-effectiveness of the amplification-free approach, the GlyMetal-based electrochemical method shows great promise in the point-of-care detection of glycoproteins.