When a potential is applied to an electrode immersed in an electrolyte solution, ions with opposite charges accumulate around the electrode, forming an electrical double layer (EDL). Unlike flat electrodes, nanoporous electrodes with pore sizes comparable to the EDL thickness experience overlapping EDLs, altering the electrochemically effective surface area. Although previous research has primarily examined the ion charging dynamics and EDL formation in nanoporous electrodes, the impact of EDL overlap on Faraday reactions remains underexplored. In this study, we examined the influence of EDL overlap on electrochemical reactions within nanoporous electrodes using chronoamperometry and DC and AC voltammetry. We used the electrolyte concentration, measurement duration, overpotential, and electrode material as variables to determine the relationship between the extent of EDL overlap and the electrochemical reaction. The electrolyte concentration-dependent electrochemical reaction due to the EDL overlap was more pronounced for electrodes with faster potential changes, shorter measurement times, lower overpotentials, and slower catalytic activity. This is a unique nanoporous electrochemical phenomenon that is not observed on flat electrodes. These findings provide insight into the utilization of nanoporous electrodes in catalytic and sensor applications.
Read full abstract