In the context of global climate change, the frequency of waterlogging is increasing. Therefore, to elucidate the effects of waterlogging under real precipitation conditions on the physiological characteristics of peanuts and the underlying mechanics and to provide a theoretical basis for timely protective measures, this study involved a waterlogging disaster simulation experiment in the field environment and a waterlogging stress control experiment in the potting environment. It was found that sufficient water had a positive effect on the growth and development of peanuts (Arachis hypogaea L.) during the 3–5 days period at the beginning of waterlogging. However, as the duration of waterlogging increased, excess water inhibited the growth of peanuts, with a stronger inhibitory effect on the development of pods. A comparison of the two different experimental models found that in the potting environment, water circulation was not smooth, and the intensity of waterlogging was higher than in the field environment experiment, resulting in the effect of waterlogging being advanced by one observation stage (2 days) in the potting environment. Furthermore, using a novel fluorescence imaging system, an analysis of variations in the physiological characteristics of leaf sections demonstrated that the chlorophyll fluorescence in the leaves of the peanut plant exhibited a specific pattern in response to waterlogging stress.
Read full abstract