Countries around the globe have introduced renewable energies (RE) and minimized the dependency of fossil resources in power systems to address extensive environmental risks. However, such large-scale energy transitions pose a great challenge to power systems due to the volatility of RE. Meanwhile, power demand is increasing over time and it shows temporal characteristics, such as seasonal and peak-valley patterns. Whether the future power system with a larger proportion of RE can meet the surging but fluctuated electricity demand remains problematic. Previous studies on short-term load forecasting focused more on forecasting accuracy than stability. Further, there is a relative paucity of research into temporal patterns. In order to fill in these research gaps, this paper proposes a fuzzy theory-based machine learning model for workdays and weekends short-term load forecasting. Fuzzy time series (FTS) is applied for data mining and back propagation (BP) neural network is used as the main predictor for short-term load forecasting. To exploit the trade-offs between forecasting stability and accuracy, multi-objective optimization is applied to modify the parameters of BP. Moreover, an interval forecasting architecture with several statistical tests is constructed to address forecasting uncertainties. Short-term load data from Victoria in Australia is selected as a case study. Results demonstrate that the proposed method can significantly boost forecasting stability and accuracy, and help strategy making in the field of energy and electricity system management and planning.