The SARS-CoV-2 genome has been shown to be m6A methylated at several positions in vivo. Strikingly, a DRACH motif, the recognition motif for adenosine methylation, resides in the core of the transcriptional regulatory leader sequence (TRS-L) at position A74, which is highly conserved and essential for viral discontinuous transcription. Methylation at position A74 correlates with viral pathogenicity. Discontinuous transcription produces a set of subgenomic mRNAs that function as templates for translation of all structural and accessory proteins. A74 is base-paired in the short stem-loop structure 5'SL3 that opens during discontinuous transcription to form long-range RNA-RNA interactions with nascent (-)-strand transcripts at complementary TRS-body sequences. A74 can be methylated by the human METTL3/METTL14 complex in vitro. Here, we investigate its impact on the structural stability of 5'SL3 and the long-range TRS-leader:TRS-body duplex formation necessary for synthesis of subgenomic mRNAs of all four viral structural proteins. Methylation uniformly destabilizes 5'SL3 and long-range duplexes and alters their relative equilibrium populations, suggesting that the m6A74 modification acts as a regulator for the abundance of viral structural proteins due to this destabilization.