The organization of chromatin in three rat liver nuclear populations, namely diploid stromal, diploid parenchymal, and tetraploid parenchymal nuclei, which were separated by zonal centrifugation, was studied by digestion with micrococcal nuclease and pancreatic deoxyribonuclease in 3-week-old rats in which the parenchymal cells contain diploid nuclei and in 2-and 4-month-old rats with a high proportion of tetraploid nuclei. Digestion by micrococcal nuclease allowed the estimation of DNA-repeat length in chromatin. Parenchymal nuclei have shorter repeat length than stromal nuclei and DNA-repeat length increases with the age in all three nuclei populations. The kinetics of digestion by micrococcal nuclease showed that nuclei with shorter repeat length are more sensitive to micrococcal nuclease and that the sensitivity of chromatin decreases with age for all the types of nuclei in this study. The kinetics of digestion by pancreatic deoxyribonuclease showed that sensitivity of chromatin is related to the repeat length and that the sensitivity decreases with the ages.