We report the nanofabrication and characterization of optical spot-size converter couplers based on curved GaAs cantilever waveguides. Using the stress mismatch between the GaAs substrate and deposited Cr-Ni-Au strips, single-mode waveguides can be bent out-of-plane in a controllable manner. A stable and vertical orientation of the out-coupler is achieved by locking the spot-size converter at a fixed 90 ∘ angle via short-range forces. The optical transmission is characterized as a function of temperature and polarization, resulting in a broad-band chip-to-fiber coupling extending over 150 nm wavelength bandwidth at cryogenic temperatures, with the lower bound for the coupling efficiency into the TE mode being 16±2% in the interval 900-1050 nm. The methods reported here are fully compatible with quantum photonic integrated circuit technology with quantum dot emitters, and open opportunities to design novel photonic devices with enhanced functionality.
Read full abstract