The self-assembly of peptides and proteins into β-sheet rich amyloid fibrils is linked to both functional and pathological states. In this study, the growth of fibrillar structures of the short peptide GNNQQNY, a fragment from the yeast prion Sup35 protein, was examined. Molecular dynamics simulations were used to study alternative mechanisms of fibril growth, including elongation through binding of monomers as well as fibril self-assembly into larger, more mature structures. It was found that after binding, monomers diffused along preformed fibrils toward the ends, supporting the mechanism of fibril growth via elongation. Lateral assembly of protofibrils was found to occur readily, suggesting that this could be the key to transitioning from isolated fibrils to mature multilayer structures. Overall, the work provides mechanistic insights into the competitive pathways that govern amyloid fibril growth.
Read full abstract