DNA transposons play a crucial role in determining the size and structure of eukaryotic genomes. In this study, a new family of IS630-Tc1-mariner (ITm) DNA transposons, named Hiker (HK), was identified. HK is characterized by a DD35E catalytic domain and is distinct from all previously known families of the ITm group. Phylogenetic analyses showed that DD35E/Hiker forms a monophyletic clade with DD34E/Gambol, indicating that they may represent a separate superfamily of ITm. A total of 178 Hiker species were identified, with 170 found mainly in Actinopterygii, one in Chondrichthyes, six in Anura and one in Mollusca. Gambol (GM), on the other hand, are found in invertebrates, with 18 in Arthropoda and one in Platyhelminthes. Hiker transposons have a total length ranging from 2.14 to 3.67 kb and contain a single open reading frame that encodes a protein of approximately 370 amino acids (range 311–413 aa). They are flanked by short terminal inverted repeats (TIRs) of 16–30 base pairs and two base pair (TA) target-site duplications. In contrast, most transposons of the Gambol family have a total length of 1.35–5.96 kb, encode a transposase protein of approximately 350 amino acids (range 306–374 aa), and are flanked by TIRs that range from 32 to 1097 bp in length. Both Hiker and Gambol transposases have several conserved motifs, including helix-turn-helix (HTH) motifs and a DDE domain. Our study observed multiple amplification waves and repeated horizontal transfer (HT) events of HK transposons in vertebrate genomes, indicating their role in diversifying and shaping the genomes of Actinopterygii, Chondrichthyes, and Anura. Conversely, GM transposons showed few Horizontal transfer events. According to cell-based transposition assays, most HK transposons are likely inactive due to the truncated DNA binding domains of their transposases. We present an updated classification of the ITm group based on these findings, which will enhance the understanding of both the evolution of ITm transposons and that of their hosts.
Read full abstract