Lactic acid bacteria (LAB), traditionally consumed as fermented foods, are now being applied to the medical field beyond health-functional food as probiotics. Therefore, it is necessary to continuously discover and evaluate new strains with suitable probiotic characteristics, mainly focusing on safety. In this study, we isolated eight new strains from postmenopausal vaginal fluid using culturomics approaches, an emerging area of interest. Data showed that most strains possessed significant cell surface hydrophobicity (≥ 76%), auto-aggregation capacity (17 to 61%), strong adhesion activity (8 to 34%), and excellent resistance to gastric acid, bile salt, and digestive enzyme, enhancing their survival in the gastrointestinal tract. Moreover, the strains exhibited functional characteristics, including substantial antibacterial activity with a minimal inhibitory concentration (MIC) ranging from 12.5 to 50%. They also harbored bacteriocins genes, produced short-chain fatty acids (acetate and propionate), exhibited significant phagocytic activity, possessed high antioxidative properties, rapidly depleted sodium nitrite, and exhibited proteolysis and β-glucosidase activity. In addition, heat-killed LAB strains significantly reduced the gene expressions of proinflammatory cytokines such as IL-β, IL-6, and iNOS in macrophages. Safety assessment revealed no cytotoxicity in macrophage cell lines. All strains tested negative for biogenic amine or H2O2 production, displayed no gelatinase or hemolytic activity, lacked virulence genes or detrimental enzymes, and displayed antibiotic susceptibility. In summary, these newly isolated strains demonstrate excellent probiotic functionality with a strong focus on safety, making them promising candidates for future drug development in the relevant fields.
Read full abstract