Carapace color plays an important role in the communication, reproduction, and self-defense of crustaceans, which is also related to their economic value. Chinese mitten crab (Eriocheir sinensis) is an important aquaculture species in China, and there are different strains with heritable carapace colors, i.e. Green, White, and Red. However, there is a lack of research on the formation mechanism of carapace color of this species. This study was conducted to compare the histology and transcriptome in the inner membrane of three carapace color strains of E. sinensis. Histological comparisons revealed that the inner membrane of green and red carapace crabs contained more melanin, appearing in clusters, and had a higher presence of yellow or orange pigments. In contrast, the inner membrane of white carapace crabs had smaller and fewer melanin particles, as well as a lower presence of yellow or orange pigments. Observation under an electron microscope showed that the inner membrane of E. sinensis contained a large number of collagen fibers and various types of cells, including fibroblasts, melanocytes, and other tissue cells, which exhibited different levels of activity. Transcriptome analysis showed that the Green, Red, and White strains of E. sinensis had approximately 80.3 K, 81.6 K and 80.3 K expressed unigenes in their inner membranes, respectively. When comparing Green and Red crabs, there were 2, 850 upregulated genes and 2, 240 downregulated genes. In the comparison between Red and White crabs, there were 2, 853 upregulated genes and 2, 583 downregulated genes. Furthermore, there were 2, 336 upregulated genes and 2, 738 downregulated genes in the inner membranes between White and Green crabs. Among these genes, some members of the solute carriers family, which are involved in carotenoid transportation, showed differential expression among the three carapace color strains. Additionally, significant differences were observed in the expression of genes related to melanin synthesis, including wingless/integrate, tyrosinase, guanine nucleotide-binding protein inhibitory subunit, cell adhesion molecule, adenylyl cyclase, and creb-binding protein. there were no differences in the gene expression levels of the crustacyanin family. In conclusion, this study identified several candidate genes associated with carapace color in the inner membrane of E. sinensis, suggesting a close relationship between the heritable carapace colors and the transport of the carotenoids as well as the synthesis of melanin.
Read full abstract