Narrow-gap InN is a desirable candidate for near-infrared (NIR) optical communication applications. However, the absence of lattice-matched substrates impedes the fabrication of high-quality InN. In this paper, we employed Molecular Beam Epitaxy (MBE) to grow nanostructured InN with distinct growth mechanisms. Morphological and quality analysis showed that the liquid phase epitaxial (LPE) growth of hexagonal InN nanopillar could be realized by depositing molten In layer on large lattice-mismatched sapphire substrate; nevertheless, InN nanonetworks were formed on nitrided sapphire and GaN substrates through the vapor-solid process under the same conditions. The supersaturated precipitation of InN grains from the molten In layer effectively reduced the defects caused by lattice mismatch and suppressed the introduction of non-stoichiometric metal In in the epitaxial InN. Photoluminescence and electrical characterizations demonstrated that high-carrier concentration InN prepared by vapor-solid mechanism showed much stronger band-filling effect at room temperature, which significantly shifted its PL peak to higher energy. LPE InN displayed the strongest PL intensity and the smallest wavelength shift with increasing temperature from 10 K to 300 K. These results showed enhanced optical properties of InN nanostructures prepared on large lattice mismatch substrates, which will play a crucial role in near-infrared optoelectronic devices.
Read full abstract