Abstract
In this paper, we proposed and demonstrated a highly sensitive fiber vector magnetic field sensor utilizing an open-cavity Mach-Zehnder interferometer (MZI) filled with magnetic fluid. The MZI sensor was fabricated using large-offset splicing technique to form an open cavity, facilitating the easy introduction of magnetic fluid samples into the open cavity. The MZI sensor was then encapsulated in a glass capillary containing diluted magnetic fluid. As the applied magnetic field varies, the refractive index of the magnetic fluid undergoes a corresponding change, subsequently inducing a shift in the transmission spectrum of the MZI. By monitoring the wavelength shift of the transmission spectrum, we can accurately detect the intensity of the magnetic field. The proposed sensor can achieve vector magnetic field measurement because of the axially asymmetric open-cavity MZI. The maximum sensitivity to magnetic field direction is 0.260 nm/°. Notably, the proposed sensor achieves an ultrahigh sensitivity, reaching an value of −17.306 nm/mT within the range of 4 mT to 7 mT. In addition, a temperature sensitivity of 2.236 nm/℃ is obtained within the temperature range of 30 ℃ to 65 ℃. Given its advantages, including high sensitivity, compact size and low cost, our MZI sensor holds immense potential for diverse applications in magnetic field measurement.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.