For d ∈ ℕ and r ∈ ℝd, let τr : ℤd → ℤd, where τr(a) = (a2, …, ad, -⌊ra⌋) for a = (a1, …, ad), denote the (d-dimensional) shift radix system associated with r. τr is said to have the finiteness property if and only if all orbits of τr end up in (0, …, 0); the set of all corresponding r ∈ ℝd is denoted by [Formula: see text], whereas 𝒟d consists of those r ∈ ℝd for which all orbits are eventually periodic. [Formula: see text] has a very complicated structure even for d = 2. In the present paper, two algorithms are presented which allow the characterization of the intersection of [Formula: see text] and any closed convex hull of finitely many interior points of 𝒟d which is completely contained in the interior of 𝒟d. One of the algorithms is used to determine the structure of [Formula: see text] in a region considerably larger than previously possible, and to settle two questions on its topology: It is shown that [Formula: see text] is disconnected and that the largest connected component has non-trivial fundamental group. The other is the first algorithm characterizing [Formula: see text] in a given convex polyhedron which terminates for all inputs. Furthermore, several infinite families of "cutout polygons" are deduced settling the finiteness property for a chain of regions touching the boundary of 𝒟2.
Read full abstract