Early Cretaceous succession of the Oued Fodda Formation in the Ouarsenis Mountains (northwestern Algeria) is mainly composed of marl–limestone alternations, which are subdivided into four informal units (Units 1 to 4), based on distinct lithological, stratonomical, and ichnological features. The ichnological analysis reveals a low diversity of the trace-fossil assemblage, which is exclusively reported from Units 2 and 3. The ichnoassemblage contains six ichnotaxa (Chondrites intricatus, Ophiomorpha isp., Planolites isp., Thalassinoides isp., Zoophycos brianteus, and Zoophycos cauda-galli), among which Zoophycos and Chondrites are the most common elements of the assemblage and occur in distinct mud-rich substrates showing different bioturbation intensities. The development of Zoophycos in the middle part of Unit 2 shows a high degree of bioturbation (bioturbation index (BI) = 4). Zoophycos specimens are of large size, between 45 cm and 75 cm in width, which were interpreted to have formed in a lower offshore environment where the oxygenation amount was optimal, the sedimentation rate was low, and the benthic food was abundant on the seafloor. Toward the upper part of Unit 2, Zoophycos-bearing levels exhibit a less intense degree of bioturbation (BI between 1 and 2) in contrast to Planolites- and Chondrites-bearing levels which have a bioturbation index (BI) between 3 and 4. At these levels, Zoophycos displays relatively small, coiled to U-shaped spreiten, probably in response to stressful and dysoxic conditions prevailing in the water bottom. With improved oxygenation in a quiet lower offshore to shelf margin environment in Unit 3, the benthic organisms recovered, as represented by medium to large size Zoophycos in association with Ophiomorpha and scarce Chondrites burrows, even if the overall bioturbation intensity is very low. The combination of trace-fossil assemblage and lithofacies of the Oued Fodda Formation indicates relatively stable outer shelf environments below the storm wave base, which corresponds classically to the lower offshore to shelf edge environments, and the prevailing palaeoecological conditions are optimal and stressful for the benthic organisms.
Read full abstract