Biopolymeric oil-in-water (O/W) high internal phase Pickering emulsions (HIPPEs) due to their unique rheological behaviors of HIPPEs such as shear-thinning property, viscoelasticity, and thixotropic recovery have emerged as highly promising printing inks in the 3D printing process. O/W biopolymer-based HIPPEs are categorized as complex fluids, where rheological parameters are crucial for optimizing printability. However, existing reviews have not fully elucidated the interrelationship between rheology and printability for HIPPEs in enhancing the quality and performance of printed parts. This review delved into the influence factors of the continuous phase (e.g., biopolymer type, concentration, pH, and ionic strength) and the oil phase (e.g., oil type, volume fraction, and encapsulated components) on their rheology, to adjust their rheological behaviors in order to prepare more eligible HIPPEs as printing inks. Moreover, a spectrum of rheology-printability relationships, derived from empirical trends and rigorous analytical models, is examined to provide generalized rheological guidelines for achieving successful printability in O/W biopolymer-based HIPPEs. Furthermore, unique challenges and future perspectives on preparing their complex rheological behaviors suitable for additive manufacturing in O/W biopolymer-based HIPPEs were presented. Leveraging these insights significantly reduces reliance on trial-and-error methods in printing, thereby fostering the robust development of novel O/W biopolymer-based HIPPEs and enhancing the overall quality of printed products.
Read full abstract