The paper deals with minimum stress design using a novel stress-related objective function based on the global stress-deviation measure. The shape derivative, representing the shape sensitivity analysis of the structure domain, is determined for the generalized form of the global stress-related objective function. The optimization procedure is based on the domain boundary evolution via the level-set method. The elasticity equations are, instead of using the usual ersatz material approach, solved by the extended finite element method. The Hamilton-Jacobi equation is solved using the streamline diffusion finite element method. The use of finite element based methods allows a unified numerical approach with only one numerical framework for the mechanical problem as also for the boundary evolution stage. The numerical examples for the L-beam benchmark and the notched beam are given. The results of the structural optimization problem, in terms of maximum von Mises stress corresponding to the obtained optimal shapes, are compared for the commonly used global stress measure and the novel global stress-deviation measure, used as the stress-related objective functions.
Read full abstract