A novel thin film (micrometer thickness) shape memory alloy (SMA) micro actuator is presented in this paper. The thin film SMA with composition of approximately 50:50 nickel titanium (NiTi) is sputter-deposited onto a silicon wafer in an ultra high vacuum system. Transformation temperatures of the NiTi film are determined by measuring the residual stress as a function of temperature. The transformation temperature is independent of the presence of chromium (Cr) used as an adhesion layer, or being exposed to air before annealing. A mixture of hydrofluoric acid (HF), nitric acid (HNO/sub 3/) and deionized (DI) water is used to etch the film. Different etch masks are evaluated to protect the NiTi film during the etching. Among the masks tested, a thick photoresist (AZ-4620) produces the best result. The NiTi membrane is hot-shaped into a three-dimensional (3-D) dome shape using a stainless-steel jig. Results indicate the membrane exhibits two-way effect. The performance of the SMA micro actuator is characterized with a laser measurement system for deflection versus input power and frequency response.
Read full abstract