To mitigate soil degradation and decrease dependency on chemical inputs in agriculture, this study examined the joint effects of coconut shell biochar and Bacillus strain Ya-1 on soil fertility, rhizosphere bacterial communities, and the growth of chili (Capsicum annuum L.). A controlled pot experiment with four treatments was conducted: control (CK), biochar only (C), Bacillus strain Ya-1 only (B), and a combination of both (BC). The BC treatment significantly enhanced the soil carbon and available phosphorus contents by approximately 20% and the soil nitrogen content and pH by 18% and 0.3 units, respectively, compared to the control. It also increased microbial biomass carbon and nitrogen by 25% and 30%, respectively, indicating improved soil microbial diversity as shown by the highest Pielou evenness index and Shannon index values. The combined application of biochar and the Ya-1 strain resulted in a 15% increase in chili plant height and a 40% improvement in root dehydrogenase activity, suggesting enhanced nutrient uptake and metabolism. Metabolic profiling showed shifts in stress response and nutrient assimilation under different treatments. Collectively, these results indicate the potential of biochar and microbial inoculants to significantly promote soil and plant health, providing a sustainable strategy to improve agricultural productivity and reduce reliance on chemical inputs.
Read full abstract